Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230065, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497271

RESUMO

The Pacific oyster Crassostrea gigas lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system. Exposure to a rich microbial environment at the larval stage leads to an increase in immune competence throughout the life of the oyster, conferring a better protection against pathogenic infections at later juvenile/adult stages. This beneficial effect, which is intergenerational, is associated with epigenetic remodelling. At juvenile stages, the educated immune system participates in the control of the homeostasis. In particular, the microbiota is fine-tuned by oyster antimicrobial peptides acting through specific and synergistic effects. However, this balance is fragile, as illustrated by the Pacific Oyster Mortality Syndrome, a disease causing mass mortalities in oysters worldwide. In this disease, the weakening of oyster immune defences by OsHV-1 µVar virus induces a dysbiosis leading to fatal sepsis. This review illustrates the continuous interaction between the highly diversified oyster immune system and its dynamic microbiota throughout its life, and the importance of this cross-talk for oyster health. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Sistema Imunitário
2.
Sci Adv ; 9(36): eadh8990, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37683000

RESUMO

Disease emergence is accelerating with global changes. Understanding by which mechanisms host populations can rapidly adapt will be crucial for management practices. Pacific oyster mortality syndrome (POMS) imposes a substantial and recurrent selective pressure on oyster populations, and rapid adaptation may arise through genetics and epigenetics. In this study, we used (epi)genome-wide association mapping to show that oysters differentially exposed to POMS displayed genetic and epigenetic signatures of selection. Consistent with higher resistance to POMS, the genes targeted included many genes in several pathways related to immunity. By combining correlation, DNA methylation quantitative trait loci, and variance partitioning, we revealed that a third of phenotypic variation was explained by interactions between the genetic and epigenetic information, ~14% by the genome, and up to 25% by the epigenome alone. Similar to genetically based adaptation, epigenetic mechanisms notably governing immune responses can contribute substantially to the rapid adaptation of hosts to emerging infectious diseases.


Assuntos
Estudo de Associação Genômica Ampla , Ostreidae , Animais , Aclimatação , Epigênese Genética , Síndrome , Variação Genética
3.
Mol Ecol ; 32(18): 5089-5109, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526137

RESUMO

Epigenetic modifications, like DNA methylation, generate phenotypic diversity in fish and ultimately lead to adaptive evolutionary processes. Euryhaline marine species that migrate between salinity-contrasted habitats have received little attention regarding the role of salinity on whole-genome DNA methylation. Investigation of salinity-induced DNA methylation in fish will help to better understand the potential role of this process in salinity acclimation. Using whole-genome bisulfite sequencing, we compared DNA methylation patterns in European sea bass (Dicentrarchus labrax) juveniles in seawater and after freshwater transfer. We targeted the gill as a crucial organ involved in plastic responses to environmental changes. To investigate the function of DNA methylation in gills, we performed RNAseq and assessed DNA methylome-transcriptome correlations. We showed a negative correlation between gene expression levels and DNA methylation levels in promoters, first introns and first exons. A significant effect of salinity on DNA methylation dynamics with an overall DNA hypomethylation in freshwater-transferred fish compared to seawater controls was demonstrated. This suggests a role of DNA methylation changes in salinity acclimation. Genes involved in key functions as metabolism, ion transport and transepithelial permeability (junctional complexes) were differentially methylated and expressed between salinity conditions. Expression of genes involved in mitochondrial metabolism (tricarboxylic acid cycle) was increased, whereas the expression of DNA methyltransferases 3a was repressed. This study reveals novel links between DNA methylation, mainly in promoters and first exons/introns, and gene expression patterns following salinity change.


Assuntos
Bass , Salinidade , Animais , Bass/genética , ATPase Trocadora de Sódio-Potássio/genética , Brânquias/fisiologia , Metilação de DNA/genética , Água do Mar , DNA
4.
Microbiome ; 10(1): 85, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659369

RESUMO

BACKGROUND: The interaction of organisms with their surrounding microbial communities influences many biological processes, a notable example of which is the shaping of the immune system in early life. In the Pacific oyster, Crassostrea gigas, the role of the environmental microbial community on immune system maturation - and, importantly, protection from infectious disease - is still an open question. RESULTS: Here, we demonstrate that early life microbial exposure durably improves oyster survival when challenged with the pathogen causing Pacific oyster mortality syndrome (POMS), both in the exposed generation and in the subsequent one. Combining microbiota, transcriptomic, genetic, and epigenetic analyses, we show that the microbial exposure induced changes in epigenetic marks and a reprogramming of immune gene expression leading to long-term and intergenerational immune protection against POMS. CONCLUSIONS: We anticipate that this protection likely extends to additional pathogens and may prove to be an important new strategy for safeguarding oyster aquaculture efforts from infectious disease. tag the videobyte/videoabstract in this section Video Abstract.


Assuntos
Crassostrea , Microbiota , Animais , Aquicultura , Crassostrea/genética , Sistema Imunitário , Transcriptoma
5.
Front Cell Dev Biol ; 10: 794650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295851

RESUMO

Snail-borne parasitic diseases represent an important challenge to human and animal health. Control strategies that target the intermediate snail host has proved very effective. Epigenetic mechanisms are involved in developmental processes and therefore play a fundamental role in developmental variation. DNA methylation is an important epigenetic information carrier in eukaryotes that plays a major role in the control of chromatin structure. Epigenome editing tools have been instrumental to demonstrate functional importance of this mark for gene expression in vertebrates. In invertebrates, such tools are missing, and the role of DNA methylation remains unknown. Here we demonstrate that methylome engineering can be used to modify in vivo the CpG methylation level of a target gene in the freshwater snail Biomphalaria glabrata, intermediate host of the human parasite Schistosoma mansoni. We used a dCas9-SunTag-DNMT3A complex and synthetic sgRNA to transfect B. glabrata embryos and observed an increase of CpG methylation at the target site in 50% of the hatching snails.

6.
Epigenetics Chromatin ; 14(1): 48, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702322

RESUMO

BACKGROUND: 5-Methylcytosine (5mC) is an important epigenetic mark in eukaryotes. Little information about its role exists for invertebrates. To investigate the contribution of 5mC to phenotypic variation in invertebrates, alteration of methylation patterns needs to be produced. Here, we apply new non-nucleoside DNA methyltransferase inhibitors (DNMTi) to introduce aleatory changes into the methylome of mollusk species. RESULTS: Flavanone inhibitor Flv1 was efficient in reducing 5mC in the freshwater snails Biomphalaria glabrata and Physa acuta, and to a lesser degree, probably due to lower stability in sea water, in the oyster Crassostrea gigas. Flv1 has no toxic effects and significantly decreased the 5mC level in the treated B. glabrata and in its offspring. Drug treatment triggers significant variation in the shell height in both generations. A reduced representation bisulfite-sequencing method called epiGBS corroborates hypomethylation effect of Flv1 in both B. glabrata generations and identifies seven Differential Methylated Regions (DMR) out of 32 found both in Flv1-exposed snails and its progeny, from which 5 were hypomethylated, demonstrating a multigenerational effect. By targeted bisulfite sequencing, we confirmed hypomethylation in a locus and show that it is associated with reduced gene expression. CONCLUSIONS: Flv1 is a new and efficient DNMTi that can be used to induce transient and heritable modifications of the epigenetic landscape and phenotypic traits in mollusks, a phylum of the invertebrates in which epigenetics is understudied.


Assuntos
Biomphalaria , Animais , Biomphalaria/genética , Metilação de DNA , Epigênese Genética , Epigenoma , Moluscos
7.
Front Genet ; 12: 630290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815466

RESUMO

Today, it is common knowledge that environmental factors can change the color of many animals. Studies have shown that the molecular mechanisms underlying such modifications could involve epigenetic factors. Since 2013, the pearl oyster Pinctada margaritifera var. cumingii has become a biological model for questions on color expression and variation in Mollusca. A previous study reported color plasticity in response to water depth variation, specifically a general darkening of the nacre color at greater depth. However, the molecular mechanisms behind this plasticity are still unknown. In this paper, we investigate the possible implication of epigenetic factors controlling shell color variation through a depth variation experiment associated with a DNA methylation study performed at the whole genome level with a constant genetic background. Our results revealed six genes presenting differentially methylated CpGs in response to the environmental change, among which four are linked to pigmentation processes or regulations (GART, ABCC1, MAPKAP1, and GRL101), especially those leading to darker phenotypes. Interestingly, the genes perlucin and MGAT1, both involved in the biomineralization process (deposition of aragonite and calcite crystals), also showed differential methylation, suggesting that a possible difference in the physical/spatial organization of the crystals could cause darkening (iridescence or transparency modification of the biomineral). These findings are of great interest for the pearl production industry, since wholly black pearls and their opposite, the palest pearls, command a higher value on several markets. They also open the route of epigenetic improvement as a new means for pearl production improvement.

8.
Wellcome Open Res ; 6: 195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35252590

RESUMO

Background: Pocillopora acuta is a hermatypic coral with strong ecological importance. Anthropogenic disturbances and global warming are major threats that can induce coral bleaching, the disruption of the mutualistic symbiosis between the coral host and its endosymbiotic algae. Previous works have shown that somaclonal colonies display different levels of survival depending on the environmental conditions they previously faced. Epigenetic mechanisms are good candidates to explain this phenomenon. However, almost no work had been published on the P. acuta epigenome, especially on histone modifications. In this study, we aim at providing the first insight into chromatin structure of this species. Methods: We aligned the amino acid sequence of P. acuta core histones with histone sequences from various phyla. We developed a centri-filtration on sucrose gradient to separate chromatin from the host and the symbiont. The presence of histone H3 protein and specific histone modifications were then detected by western blot performed on histone extraction done from bleached and healthy corals. Finally, micrococcal nuclease (MNase) digestions were undertaken to study nucleosomal organization. Results: The centri-filtration enabled coral chromatin isolation with less than 2% of contamination by endosymbiont material. Histone sequences alignments with other species show that P. acuta displays on average ~90% of sequence similarities with mice and ~96% with other corals. H3 detection by western blot showed that H3 is clipped in healthy corals while it appeared to be intact in bleached corals. MNase treatment failed to provide the usual mononucleosomal digestion, a feature shared with some cnidarian, but not all; suggesting an unusual chromatin structure. Conclusions: These results provide a first insight into the chromatin, nucleosome and histone structure of P. acuta. The unusual patterns highlighted in this study and partly shared with other cnidarian will need to be further studied to better understand its role in corals.

9.
Methods Mol Biol ; 2151: C1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970301

RESUMO

Correction to: Chapter 9 in: David J. Timson (ed.), Schistosoma mansoni: Methods and Protocols, Methods in Molecular Biology, vol. 2151.

10.
Methods Mol Biol ; 2151: 93-107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32451999

RESUMO

DNA-binding proteins play critical roles in many major processes such as development and sexual biology of Schistosoma mansoni and are important for the pathogenesis of schistosomiasis. Chromatin immunoprecipitation (ChIP) experiments followed by sequencing (ChIP-seq) are useful to characterize the association of genomic regions with posttranslational chemical modifications of histone proteins. Challenges in the standard ChIP protocol have motivated recent enhancements in this approach, such as reducing the number of cells required and increasing the resolution. In this chapter, we describe the latest advances made by our group in the ChIP methods to improve the standard ChIP protocol to reduce the number of input cells required and to increase the resolution and robustness of ChIP in S. mansoni.


Assuntos
Histonas/metabolismo , Parasitos/metabolismo , Processamento de Proteína Pós-Traducional , Schistosoma mansoni/metabolismo , Animais , Anticorpos Anti-Helmínticos/metabolismo , Fracionamento Celular , Precipitação Química , Cromatina/metabolismo , Imunoprecipitação da Cromatina , DNA/isolamento & purificação , Humanos , Sefarose , Proteína Estafilocócica A
11.
Gene ; 729: 144166, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678264

RESUMO

Recent insights in evolutionary biology have shed light on epigenetic variation that interacts with genetic variation to convey heritable information. An important characteristic of epigenetic changes is that they can be produced in response to environmental cues and passed on to later generations, potentially facilitating later genetic adaptation. While our understanding of epigenetic mechanisms in vertebrates is rapidly growing, our knowledge about invertebrates remains lower, or is restricted to model organisms. Mollusks in particular, are a large group of invertebrates, with several species important for ecosystem function, human economy and health. In this review, we attempt to summarize the literature on epigenetic and intergenerational studies in mollusk species, with potential importance for adaptive evolution. Our review highlights that two molecular bearers of epigenetic information, DNA methylation and histone modifications, are key features for development in mollusk species, and both are sensitive to environmental conditions to which developing individuals are exposed. Further, although studies are still scarce, various environmental factors (e.g. predator cues, chemicals, parasites) can induce intergenerational effects on the phenotype (life-history traits, morphology, behaviour) of several mollusk taxa. More work is needed to better understand whether environmentally-induced changes in DNA methylation and histone modifications have phenotypic impacts, whether they can be inherited through generations and their role in intergenerational effects on phenotype. Such work may bring insights into the potential role of epigenetic in adaptation and evolution in mollusks.


Assuntos
Epigênese Genética/genética , Moluscos/genética , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Metilação de DNA/genética , Bases de Dados Genéticas , Ecossistema , Epigenômica/métodos , Interação Gene-Ambiente , Variação Genética , Fenótipo
12.
Wellcome Open Res ; 5: 121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33521328

RESUMO

We describe here a protocol for the generation of sequence-ready libraries for population epigenomics studies. The protocol is a streamlined version of the Assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) that provides a positive display of accessible, presumably euchromatic regions. The protocol is straightforward and can be used with small individuals such as daphnia and schistosome worms, and probably many other biological samples of comparable size, and it requires little molecular biology handling expertise.

13.
Genome Biol Evol ; 11(7): 1909-1922, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31273378

RESUMO

Differentiated sex chromosomes are accompanied by a difference in gene dose between X/Z-specific and autosomal genes. At the transcriptomic level, these sex-linked genes can lead to expression imbalance, or gene dosage can be compensated by epigenetic mechanisms and results into expression level equalization. Schistosoma mansoni has been previously described as a ZW species (i.e., female heterogamety, in opposition to XY male heterogametic species) with a partial dosage compensation, but underlying mechanisms are still unexplored. Here, we combine transcriptomic (RNA-Seq) and epigenetic data (ChIP-Seq against H3K4me3, H3K27me3, and H4K20me1 histone marks) in free larval cercariae and intravertebrate parasitic stages. For the first time, we describe differences in dosage compensation status in ZW females, depending on the parasitic status: free cercariae display global dosage compensation, whereas intravertebrate stages show a partial dosage compensation. We also highlight regional differences of gene expression along the Z chromosome in cercariae, but not in the intravertebrate stages. Finally, we feature a consistent permissive chromatin landscape of the Z chromosome in both sexes and stages. We argue that dosage compensation in schistosomes is characterized by chromatin remodeling mechanisms in the Z-specific region.


Assuntos
Cromatina/genética , Cromossomos/genética , Compensação de Dosagem (Genética)/genética , Schistosoma mansoni/genética , Animais , Epigênese Genética , Evolução Molecular , Feminino
14.
Elife ; 72018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044216

RESUMO

XY systems usually show chromosome-wide compensation of X-linked genes, while in many ZW systems, compensation is restricted to a minority of dosage-sensitive genes. Why such differences arose is still unclear. Here, we combine comparative genomics, transcriptomics and proteomics to obtain a complete overview of the evolution of gene dosage on the Z-chromosome of Schistosoma parasites. We compare the Z-chromosome gene content of African (Schistosoma mansoni and S. haematobium) and Asian (S. japonicum) schistosomes and describe lineage-specific evolutionary strata. We use these to assess gene expression evolution following sex-linkage. The resulting patterns suggest a reduction in expression of Z-linked genes in females, combined with upregulation of the Z in both sexes, in line with the first step of Ohno's classic model of dosage compensation evolution. Quantitative proteomics suggest that post-transcriptional mechanisms do not play a major role in balancing the expression of Z-linked genes.


Assuntos
Evolução Molecular , Dosagem de Genes , Parasitos/genética , Schistosoma/genética , Cromossomos Sexuais/genética , Animais , Feminino , Genoma , Masculino , Filogenia , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética
15.
Genome Biol Evol ; 10(3): 840-856, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29447366

RESUMO

Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting over 230 million people worldwide. Additionally to their major impact on human health, they are also models of choice in evolutionary biology. These parasitic flatworms are unique among the common hermaphroditic trematodes as they have separate sexes. This so-called "evolutionary scandal" displays a female heterogametic genetic sex-determination system (ZZ males and ZW females), as well as a pronounced adult sexual dimorphism. These phenotypic differences are determined by a shared set of genes in both sexes, potentially leading to intralocus sexual conflicts. To resolve these conflicts in sexually selected traits, molecular mechanisms such as sex-biased gene expression could occur, but parent-of-origin gene expression also provides an alternative. In this work we investigated the latter mechanism, that is, genes expressed preferentially from either the maternal or the paternal allele, in Schistosoma mansoni species. To this end, transcriptomes from male and female hybrid adults obtained by strain crosses were sequenced. Strain-specific single nucleotide polymorphism (SNP) markers allowed us to discriminate the parental origin, while reciprocal crosses helped to differentiate parental expression from strain-specific expression. We identified genes containing SNPs expressed in a parent-of-origin manner consistent with paternal and maternal imprints. Although the majority of the SNPs was identified in mitochondrial and Z-specific loci, the remaining SNPs found in male and female transcriptomes were situated in genes that have the potential to explain sexual differences in schistosome parasites. Furthermore, we identified and validated four new Z-specific scaffolds.


Assuntos
Evolução Biológica , Schistosoma mansoni/genética , Esquistossomose/genética , Processos de Determinação Sexual/genética , Alelos , Animais , Feminino , Humanos , Masculino , Schistosoma mansoni/patogenicidade , Esquistossomose/parasitologia , Caracteres Sexuais
17.
PLoS Negl Trop Dis ; 11(5): e0005246, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28510608

RESUMO

BACKGROUND: The debilitating human disease schistosomiasis is caused by infection with schistosome parasites that maintain a complex lifecycle alternating between definitive (human) and intermediate (snail) hosts. While much is known about how the definitive host responds to schistosome infection, there is comparably less information available describing the snail's response to infection. METHODOLOGY/PRINCIPLE FINDINGS: Here, using information recently revealed by sequencing of the Biomphalaria glabrata intermediate host genome, we provide evidence that the predicted core snail DNA methylation machinery components are associated with both intra-species reproduction processes and inter-species interactions. Firstly, methyl-CpG binding domain protein (Bgmbd2/3) and DNA methyltransferase 1 (Bgdnmt1) genes are transcriptionally enriched in gonadal compared to somatic tissues with 5-azacytidine (5-AzaC) treatment significantly inhibiting oviposition. Secondly, elevated levels of 5-methyl cytosine (5mC), DNA methyltransferase activity and 5mC binding in pigmented hybrid- compared to inbred (NMRI)- B. glabrata populations indicate a role for the snail's DNA methylation machinery in maintaining hybrid vigour or heterosis. Thirdly, locus-specific detection of 5mC by bisulfite (BS)-PCR revealed 5mC within an exonic region of a housekeeping protein-coding gene (Bg14-3-3), supporting previous in silico predictions and whole genome BS-Seq analysis of this species' genome. Finally, we provide preliminary evidence for parasite-mediated host epigenetic reprogramming in the schistosome/snail system, as demonstrated by the increase in Bgdnmt1 and Bgmbd2/3 transcript abundance following Bge (B. glabrata embryonic cell line) exposure to parasite larval transformation products (LTP). CONCLUSIONS/SIGNIFICANCE: The presence of a functional DNA methylation machinery in B. glabrata as well as the modulation of these gene products in response to schistosome products, suggests a vital role for DNA methylation during snail development/oviposition and parasite interactions. Further deciphering the role of this epigenetic process during Biomphalaria/Schistosoma co-evolutionary biology may reveal key factors associated with disease transmission and, moreover, enable the discovery of novel lifecycle intervention strategies.


Assuntos
Biomphalaria/genética , Biomphalaria/parasitologia , Metilação de DNA , Interações Hospedeiro-Parasita , Schistosoma mansoni/fisiologia , Animais , Azacitidina/farmacologia , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Ligação a DNA/genética , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Perfilação da Expressão Gênica , Humanos , Oviposição/efeitos dos fármacos , Filogenia , Esquistossomose mansoni/parasitologia
18.
Nat Commun ; 8: 15451, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28508897

RESUMO

Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis.


Assuntos
Biomphalaria/genética , Biomphalaria/parasitologia , Genoma , Esquistossomose mansoni/transmissão , Comunicação Animal , Animais , Biomphalaria/imunologia , Elementos de DNA Transponíveis , Evolução Molecular , Água Doce , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Feromônios , Proteoma , Schistosoma mansoni , Análise de Sequência de DNA , Estresse Fisiológico
19.
Dev Comp Immunol ; 75: 16-27, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28257854

RESUMO

The fresh water snail Biomphalaria glabrata is one of the vectors of the trematode pathogen Schistosoma mansoni, which is one of the agents responsible of human schistosomiasis. In this host-parasite interaction, co-evolutionary dynamic results into an infectivity mosaic known as compatibility polymorphism. Integrative approaches including large scale molecular approaches have been conducted in recent years to improve our understanding of the mechanisms underlying compatibility. This review presents the combination of integrated Multi-Omic approaches leading to the discovery of two repertoires of polymorphic and/or diversified interacting molecules: the parasite antigens S. mansoni polymorphic mucins (SmPoMucs) and the B. glabrata immune receptors fibrinogen-related proteins (FREPs). We argue that their interactions may be major components for defining the compatible/incompatible status of a specific snail/schistosome combination.


Assuntos
Antígenos de Helmintos/genética , Biomphalaria/imunologia , Imunoglobulinas/genética , Mucinas/genética , Schistosoma mansoni/imunologia , Esquistossomose/imunologia , Animais , Antígenos de Helmintos/metabolismo , Evolução Biológica , Biomphalaria/parasitologia , Vetores de Doenças , Interações Hospedeiro-Parasita , Humanos , Imunoglobulinas/metabolismo , Mucinas/metabolismo , Polimorfismo Genético , Proteômica , Transcriptoma
20.
Trends Parasitol ; 33(4): 285-294, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28040375

RESUMO

The G×E concept, in which genotype × environment interactions bring about the phenotype, is widely used to describe biological phenomena. We propose to extend the initial notion of the concept, replacing G by 'inheritance system'. This system, comprised of both genome and epigenome components, collectively interacts with the environment to shape the development of a phenotype. In the case of the human blood fluke Schistosoma mansoni, responsible for intestinal bilharzia, the phenotypic trait that is most relevant to global health is infection success. Taking a systems biology view we show how genetic and epigenetic interactions result in ephemeral, but also heritable, phenotypic variations that are important for infection success.


Assuntos
Meio Ambiente , Epigênese Genética , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/parasitologia , Biologia de Sistemas , Animais , Variação Genética , Genótipo , Fenótipo , Schistosoma mansoni/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...